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It is shown by the example of "Chaplygin's sled" that & nonholonomic con-
straint may be realized by means of a viscous friction force in the limiting
case, when the coefficlent of viscous friction is equal to infinity. The
result thus obtalned disproves Carathéodory's conclusion that such reallza-
tion 1s 1mpossilble,

1. In 1933 Carathéodory [1] investigated the inertial motion of Chaply-
gin's sled [2] in particular case in which the center of mass of the system
lies on a stralght line passing through the plane of the runner. In this
case the motion of the sled 1s described by the differential equatilons

¥ u = aw?, ak?0 =uw (k2 =1-F.J/ma?) (1.1)

Here u 3s the magnitude of the velocity of
the point of contact Letween the runner and the
plane, w 1s the angular velocity of rotation
of the sled, J 1s the central moment of inertia,
m 1is the mass, g 1s the distance between the
point (x, y) of contact between runner and plane
and the center of mass ¢ of the sled (Fig. 1).
The reaction force A resilsts any sliding of the
sled in a direction perpendicular to the plane of
the runner, and therefore in the ordilnary motion

Fig. 1 of the sled described by Equations (1.1) we have
the velocity component v = O , Assuming that &
has the nature of a viscous friction force, Carathéodory represented this
force 1n the form
R = —Nv: (1.2)

where N 1s the coefficient of viscous friction, a very large number. ir
we introduce the small parameter e = J/Naz, then for v # 0 the equations
of motlon of the sled can be written in the form

v oEaw, i w? 4 eaow’; akfey - uw = — eam’ (1.3)

From Equations (1.3) it can be seen at once that when ¢ = O , tney reduce
to Equations (1.1). Furthermore, Carathéodory reasoned as follows: we con-
sider the motion of the sled for the initial conditions y,= 0, vg= 0, w =ke,
where ¢ # O 1is a certain constant. Then, fg? w  and w™, from Equations
(1.3), we obtain the initlal values w,= O, wy,= O, and from Equatlons (1.1)
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we find the values wy'= 0, wy"= — %e®. Prom this Carathéodory drew the con-
clusion that for any arbitrarily smell ¢ # O the trajectory of the sled

differs from the sled trajectory for ¢ = ¢ and that consegquently the non-
holonomic constraint under consideration cannct be realized by means of vis-

cous friection foreces
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2. Caratheodory's reasoning cannot be accepted as convincing because when
we compare the motions described by Equatiens il.lg and (1.3), we must bear
in mind the fact that the system of equations (1.3) describes the motion of
the representative point in three-dimensional phase space, while the system
of eguations Ei.lg describes it in two-dimensional space. Consequently, when
we pass from (1.3} %o (1;1}, the system degenerates, Let us again examine
the system of equations {1.3). We introduce the small parameter . = g and
the variable ¢ = w* ; then Equations (1.3) can be
written in the form of three first-order equations

¢

v = ae® - Hos, © =g, WO = — gk — ue (2.1)

which describe the motion of the representative
point ywo-space, and the first eguation of (1.3}
becomes the simple relationship v = yg , connecting
the variables v and ¢ ., From the last equation
of the system (2.1) 1t follows that as u - O the
uwg space becomes & reglon of rapid motlons (with
respect to the coordinate ¢ ) except for the sur-
face

ak?c -+ utw =0 2.2

which 1s found to be a reglon of slow motions, and
Fig. 2 for fast motions it is a reglon of stahle equillb-
g. rium states (Fig.2). As g - O , the representative
point passes from any point of uwo space to the
surface (2.2} with a velocity

o = ﬁm@?+mﬂﬂ“®y%mMm%m>0
pord B -+ oo, when akis -+ E{9K< 0

and thereafter moves on this surface in accordance with Equations (1.1),
which are obtained from (2.1) for the case u = 0 . Equations (1.1) describe
a slow motion of the representative point
on the surface (2,2) projected onto the
uw plane, Dividing the first equation of
{1.1) by the second one, we cobtain the
differential eguation

(7]

)
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From this we find & family of integral
curves u®+ ¢®%°uw®= const , which divide
the uw plane into trajectories {Fig.3).
The line w = @ contains the eguilibrium
states of the system (1.1}; unstable Fig. 3
equilibrium states are found on the half-
line (w = 0, u < 0) and stable equillibrium states on the half-line (w = O,

u > 0). The points on the axis w = 0 correspond to rectilinear motion of
the sled at the constant veloeity u = uy,= const . This motion of the sled
will be unstable if the runner is situated in front of the center of mass
and will be stable if the runner 1s situated behind the center of mass. When
the representative point moves along the arc of an ellipse, the sled runner
describes one of the beak-shaped curves for which an analytic expression was
found by Carathéodory.

In the case of small values of the parameter u{n # O) the representa-
tive point in uwo space passes from points outside a finite neighborhood of
the surface (2.2) into & p neighborhood of this surface in a time of the
order of u ln w ! and thereafter remains in the nelghborhood [ 3].
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Let us now turn to Carathéodory's re&soning. First of all, we note that
for Carathéodory's initial conditions (u,= O, wy= ke, g,= 0}, the representa-
tive point in wuywe space is situated on the surface (2.2) and consequently
in the region of slow motion. that 1s represented by a u-neighborhood of
the surface (2.2), when . # O {u < 1). According to the foregoing, the
representative poilnt will remain in this region thereafter as well. Let us
study further the behavlior of the functlon e:=o¢-(t) . For this purpose,
we shall consider the motion of the representative point in ywe- space.
Differentiating the last equation {2.1) and eliminating the variable s, we
obtain from (2.1} the system of differential equations

du d
ak? —- = a®k@? — po (uo 4 po),  ak? ?iﬁ?) = - UD - PO {2.3)

i
pak? %‘ = [u (v + po?) — 2] 6" — a®® + wu? 4 pue?

describing the motlon of the representative polnt in uwo+ space. From the
last equation of (2.3) it follows that as y — O, the uwe* space becomes a
region of fast motions (with respect to the coordinate o'} except for the
surface

K0’ = ou? — a¥he® (2.4)

which 1s found to be a region of slow motions
(Fig.4). These slow motlons wlll be stable
with respect to fast motions. 1In the case of
small values of the parameter 4 (u # O) the
region of slow motions will be a y-neighbohood
of the surface (2.5)

(e +po? — a2k 0" — a?%w? -0 u? + puns= 0

In the restricted region of uwos: space
the surface (2.5) differs from (2.4) by a
small quantity of the order of , , and as
g ~ 0, the region approaches the surface
22.5). For Carathéodory's initial conditions

ug= 0, wy= ke, 64= O} the representative
polnt in (u, w, o) space¢ lles outside a finite
neighborhood of the surface (2.5) and, in accordance with the foregoing, it
will enter & u nelghborhood of this surface in a time of the order of

u 1n u~', For the values y = 0, w = kg, on the surface (2.4) we have

o*= — ke®. Consequently, as u— 0, the change in o- from o*= 0 to o*= — ke®
becomes an instanteneous jump {see Fig.4). Thus, the contradiction reached
by Carathéodory 1is resolved as follows: although the values of ¢”» ¢+ at
the initial instant of time ¢ = O are actually different in the cases u=0
and p==0 (<€ 1), this difference nevertheless vanishes within a period
of the order of u In y-? As - 0, the reglon of slow motlions 18 pressed
toward the surface, and the limiting {slow) motion of the nondegenerate sys-
tem (2,1) colncldes with the motion of the limiting (degenerate] system
(1.1). The slow motion is found to be stable with respect to the fast
motlons.

The above discussion leads to the conclusion that a nonholonomic con-
straint arising in the motion of the runner on the plane may be realized by
means of viscous frietion forces and corresponds to the case in which the
coefficient of viscous friction is equal to infinity.

In conclusion, the author takes this opportunity to express his gratitude
to Ju.I, Neimark and N.A. Zheleztsov for thelr -useful advice.
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