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It IS shown by the example of “Chaplygln’s sled” that a nonholonomlc con- 
straint Nay be realized by means of a viscous friction force in the limiting 
case, when the coefficient of viscous friction is equal to infinity. The 
result thus obtained disproves Caratheodory’s conclusion that such reallza- 
tlon Is Impossible. 

1, In 1933 Caratheodory [1] Investigated the Inertial motion of Chaply- 
gin’s sled [2] in particular case In which the center of mass of the system 
lies on a straight line passing through the plane of the runner. In this 
case the motion of the sled Is described by the dlfferentlal equations 
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Here u Is the magnitude of the velocity of 
the point of contact between the runner and the 
plane, w Is the angular velocity of rotation 
of the sled, J is the central moment of Inertia, 
m is the mass, c Is the distance between the 
point (2, I/) of contact between runner and plane 
and the center of mass C of the sled (Fig. 1). 
The reaction force A resists any sliding of the 
sled in a direction perpendicular to the plane of 
the runner, and therefore in the ordinary motion 

Fig. 1 of the sled described by Equations (1.1) we have 
the velocity component u = 0 , Assuming that 19 

has the nature of a viscous friction force, Caratheodory represented this 
force in the form 

R = --NV. (1.2) 

where N is the coefficient of viscous friction, a very large number. If 
we introduce the small parameter c = J/No' , then for u # 0 the equations 
of motion of the sled can be written in the form 

” m(O’, 11. lid $ enowl’; ,I &I + [,a =: - &N(!,‘~ ( 1.3) 

From Equations (1.3) It can be seen at once that when E = 0 , tne;,rE;;“e 
to Equations (1.1). Furthermore, Caratheodory reasoned as follows: 
sider the motion of the sled for the initial conditions uO= 0, v0 = 0, w0 =kc, 
where c f 0 is a certain constant. Then, for W’ and UJ’*, from Equations 
(1.3), we obtain the Initial values W0 = 0, W;’ 0, and from Equations (1.1) 
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we find the values ac'= 0, UC*= - ko"* From this Caratheodory drew the con- 
clusion that for any arbitrarily small c # 0 the trajectory of the sled 
differs from the sled trajectory for E = 0 and that consequently the non- 
hofonomic constraint under consideration cannot be realized by means of vis- 
cous friction forces, 

2, Caratheodory's reasoning cannot be acce 
we compare the motions described by Equations 
in mind the fact that the system of equations 
the representative point in three-dimensional phase space, whfle the system 

describes it in two-dimensional space. Consequently, when 
to (l.lf* the system degenerates, Let us again exam%ne 

the system of equations (1.3). We introduce the small parameter )1 = co and 
the variable o = UP ; then Equations (1.3) cm be 
written in the form of three first-order equations 

It. = no2 + c\oo, 0' -= ci, PO' = - al& - uw (2.1) 

which describe the motfon of the representative 
point umo-space, and the first equation of (1.3) 
becomes the simple relationship u - ~a , connecting 
the variablea v and o * From the last equation 
of the system (2.1) it foH.ows that as u - 0 the 
UUJO space beoomes a region of rapid motions (with 
respect to the coordinate u ) except for the sur- 
face 

&!z%-;- uo=O f2.q 

which 1s found to be a region of slow motions, and 

Fig. 2 for fast motions it Is a region of stable equllib- 
rlum states (Flg.2). As W - 0 , the representative 
point passes from any point of ULUO space to the 

surface (2,2) with a velocity 

and thereafter moves on this surface in accordance with Equations (1.1), 
which are obtained from (2.1) for the case p - 0 . Equations (1,X) describe 
a slow motion of the rspresentatlve point 
on the surface (2.2) projected onto the 
urn plane. Mviding the first equation of 
(1.1) by the second one, we obtain the 
differential equation 

From this'we find a family of integral 
curves us+ $k=u?= const , which divZde 
the 3~ plane into trafecturies (Pig.3). i 
The line BI = 0 contains the equilibrium 
states of the system (1.1); unstable Fig. 3 
equilibrium states are found on the half- 
line (14 = 
U> 0). 

0, u < 0) and stable equilibrium states on the half-line (w = 0, 
The oolnts on the axis UI = 0 corresnond to rectilinear motion of 

the sied at the constant velocity-. u P u,= con&. , This motion ot the sled 
will be unstable If the runner Is situated In front of the center of mass 
and will be stable If the runner is situated behind the center of mass. When 
the representative point moves along the arc of an ellipse, the sled runner 
describes one of the beak-sh&ped curves for which EUI analytic expression was 
found by Carathdodory. 

In the case of smalX values of the parameter W(W f 0) the representa- 
tive polEnt In UUIQ space passes from points outside a finite neighborhood of 
the surface (2.2) into a p neighborhood of this surface In a time of the 
order of p In n--' and thereafter remains In the neighborhood [3]* 
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Let UB now turn to Carathdodory's reasoning. First of all, we note that 
for Caratheodory's initial conditions (UO= 0, ulg= kc, e,= Of j the pepresenta- 

tive Pint fn ut#d SPace IS situated on the surface (2.2) and consequently 
in the re@xi of slow mot;ion, that is PePresented by a p-neighborhood of 
the Surface (2.2), when p # 0 (p < 1). According to the foregoing, the 
reFreB@ntatiVe Point wlll remain In thla region thereafter as well. Let us 
study further the behavior of the function o.= c.(t) . For thls purpose, 
we Bhall consider the motion of the re resentative paint in uu~’ space. 
Differentiating the hat equation (2.1 P and eliminating the variable cI, we 
obtain from (2.1) the system of differential equations 

du 
akzx = &&)a - p.0 (ELW + p’) J 

bw 
afi’di= - ix0 --pa‘ P-31 

du’ 
M2 & - = Ip (u + p6.P) - av+] 0’ - czZk2w3 -I- 63LL2 + puw~ 

describing the motion of the representative point in WU* space. From the 
last equation of (2.3) it follows that as p -. 0, the WC* space becomes a 
region of fast motions (with respect to the coordinate is*) except for the 

surface 
&&'= wuz - $,&$ 12.4) 

which is found to be a region of slow motions 
(Flg.4). These slow motions w!_ll be stable 
with respect to fast motions. In the case of 
small values of the parameter g (r*1 # 0) the 
region of slow motions will be a G-neighbohood 
of the surface 

G.5) 

[,u ($4 +~HIJ 2, - n2k4j u’ -- a”k”w 3 + w d + pm3 = 0 

(Ir 
In the restricted region of LCW* space 

the surface (2.5) differs from (2.4) by a 
small quantity of the order of v , and as 
tJ'C, 

Fig, 4 f 
2.4). 

the region approaches the surface 
For Carathkodory's initial conditions 

y= 0, u) '3 hc, u*= 0) the representative 
polnt in lu, (u, 6'9 space lies outside a finite 

neighborhood of the surface (2.5) and, In accordance wlth the foregoing, it 
will enter a p nelghbarhood of this surface In a time of the order of 
ci In u-l. For the values u = 0, UJ = kc, on the surface (2.4) we have 
0" - ku=. ConseqUently,ae g-0, the changein u' from e** 0 to c** - kC3 
becomes an inatanteneous jump [Bee Fig.4). Thus, the contradiction reached 
by Caratheodory is resolved as folloW3: although the values of u)"= d* at 
the Initial instant of time t = 0 are actually different in the cases c1=0 
and p+ 0 014 l), this difference nevertheless vanishes within a period 
of the order of p ln +,A-~ As p+O, the region of slow motions is pressed 
toward the surface, and the llmitlng (slow) motion of the nonde enerate sys- 
tem (2.1) colncldes with the motion of the limiting (degenerate f system 
(1.1). The slow motion is found to be stable with respect to the fast 
motions. 

‘I’& above discussion leads to the cor,clusion that a nonholortomic con- 
straint arising fn the motion of the runner on the plane may be realized by 
means of ~r~sc~us friction forces and carresponds to the case in which the 
coefficient of viscous frlctlon 1s equal to Infinity. 

In conclusion, the author takes this opportuility to $xpress his gratitude 

to 111.1. Nelmark and N.A. Zheleztsov for thelrUBefu1 advice. 
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